85,460 research outputs found

    NASA Ames three-dimensional potential flow analyses system (POTFAN) boundary condition code (BCDN), version 1

    Get PDF
    This segment of the POTFAN system is used to generate right hand sides (boundary conditions) of the system of equations associated with the flow field under consideration. These specified flow boundary conditions are encountered in the oblique derivative boundary value problem (boundary value problem of the third kind) and contain the Neumann boundary condition as a special case. Arbitrary angle of attack and/or sideslip and/or rotation rates may be specified, as well as an arbitrary, nonuniform external flow field and the influence of prescribed singularity distributions

    Laminar flow past a sphere at high mach number

    Get PDF
    Hypersonic viscous flow past spher

    Halogenation of microcapsule walls

    Get PDF
    Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials

    Device for quickly sensing the amount of O2 in a combustion product gas

    Get PDF
    A sensing device comprising an O2 sensor, a pump, a compressor, and a heater is provided to quickly sense the amount of O2 in a combustion product gas. A sample of the combustion product gas is compressed to a pressure slightly above one atmosphere by the compressor. Next, the heater heats the sample between 800 C and 900 C. Next, the pump causes the sample to be flushed against the electrode located in O2 sensor 6000 to 10,000 times per second. Reference air at approximately one atmosphere is provided to the electrode of O2 sensor. Accordingly, the O2 sensor produces a voltage which is proportional to the amount of oxygen in the combustion product gas. This voltage may be used to control the amount of O2 entering into the combustion chamber which produces the combustion product gas

    Proposed fast-response oxygen monitoring and control system for the Langley 8-foot high-temperature tunnel

    Get PDF
    A fast-response oxygen monitoring and control system, based on a Y2O3-stabilized ZrO2 sensor, was developed and tested in the laboratory. The system is capable of maintaining oxygen concentration in the CH4-O2-air combustion product gases at 20.9 + or - 1.0 percent. If the oxygen concentration in the exhaust stream differs from that in normal air by 25 percent or more, an alarm signal is provided for automatic tunnel shutdown. The overall prototype system response time was reduced from about 1 sec in the original configuration to about 0.2 sec. The basis of operation and the results of laboratory tests of the system are described

    The application of acoustic emission technique to fatigue crack measurement

    Get PDF
    The applicability of acoustic emission technique to measure fatigue cracks in aluminum alloy specimens was investigated. There are several variables, such as the metallurgical and the physical treatment of the specimen, that can affect the level of acoustic activity of a fatigue specimen. It is therefore recommended that the acoustic emission technique be supplemented by other nondestructive evaluation methods to obtain quantitative data on crack growth

    Characterization of particles in the Langley 0.3 meter transonic cryogenic tunnel using hot wire anemometry

    Get PDF
    Hot wire anemometry was used to identify the nature of particles reportedly observed during free stream velocity measurements in the Langley 0.3-meter transonic cryogenic tunnel using a Laser Doppler Velocimeter. Since the heat-transfer process from the hot wire depends on the thermal conductivity and sticking capability of the particles, it was anticipated that the hot wire anemometer response would be affected differently upon impaction by liquid droplets and solid aerosols in the test gas stream. Based on the measured time response of the hot-wire anemometer in the cryogenic tunnel operated in the 0.3-0.8 Mach number range, it is concluded that the particles impacting the hot wire are liquid in nature rather than solid aerosols. It is further surmised that the liquid aerosols are unevaporated liquid nitrogen droplets used for cooling the tunnel test gas

    Ground pattern analysis in the Great Plains

    Get PDF
    There are no author-identified significant results in this report
    corecore